DESIGN AND FABRICATE OF NEW PELTON WHEEL BLADE

MOHD QAYYUUM BIN MOHD RIDZUAN

A report submitted in fulfillment of the requirements for the award of Diploma of Mechanical Engineering

Faculty of Mechanical Engineering
Universiti Malaysia Pahang

NOVEMBER 2008
SUPERVISOR’S DECLARATION

“I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Diploma of Mechanical Engineering”

Signature : ...

Supervisor : En. Muhammad Imran Bin Mohmad Sairaji

Position : Vocational Training Officer

Date : ..
STUDENT'S DECLARATION

I declare that this thesis entitled “Design and Fabricate of New Pelton Wheel Blade” is the result of my own research except as cited in the reference. The thesis has not been accepted for any diploma concurrently submitted in candidature for any other diploma.

Signature : ..
Name : Mohd Qayyuum Bin Mohd Ridzuan
Date : ..
To my beloved father, mother, sister and brother

Mohd Ridzuan B Abdul Manaf, Nor Balquis Binti Simon,

Noor Qursyaaien and Mohd Qha’liq
ACKNOWLEDGEMENT

In the name ALLAH S.W.T the Most Beneficent and Most Merciful. The deepest sense of gratitude to the Almighty for the strength and ability to complete this Final Year Project. Infinite thanks I brace upon Him.

I would like to take this opportunity to express my sincere appreciation to my supervisor En. Muhamad Imran Bin Mohmad Sairaji, for encouragement, guidance, morale support, and critics of motivation that makes this project a success. I am also very thankful to Mr. Devaraja Ramasamy, En.Khairul Azha B A.Jalal and En.Mohd Rashidi B Maarof for their help and tips in understanding Pelton wheel blade, using CNC Milling machine and Sand Casting. Without them, this project is surely will not succeed with excellent speed.

I would also like to extend my deepest appreciation to my mother, father and my family for their supports and motivation throughout this final year project.

Last but not least, I am also indebt to Faculty of Mechanical Engineering for the usage of workstation computer, CNC Milling machine, sand casting and fluid lab equipments for fabrication and analysis of Final Year Project. My Sincere appreciation to who has involved directly and indirectly in succession of the project and thesis. Their views and tips are useful indeed. I am grateful to all of them. Thank You.
ABSTRACT

Design and fabricating New Pelton Wheel Blade is a conceptual understanding of turbine engineering and water flow engineering which is not provided in daily lectures room due to the fact that it is advance knowledge in this field. It is one of the industry that needs necessary knowledge in Malaysia, this is because in our country has many dam but they did not use Pelton concept turbine. Theoretically, it uses the same concept and field of engineering. As such, it is vital to attain this basic knowledge through this project. The design is taken from the existing Pelton wheel and it is vital because the new Pelton wheel needs to fit inside the existing hub. Material that is strong and considerably light is was used to fabricate the Pelton wheel blade using various methods. Evaluation of the test is based on the data obtained in which its range is identical between the existing and new Pelton wheel blade. The findings suggest that a lighter Pelton are an ideal selection, but we compensate the weight with a much more resistant and strong material. All of the work that been done in this project prove to be vital to the performance of the Pelton wheel blade.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISOR’S DECLARATION</td>
</tr>
<tr>
<td>STUDENT’S DECLARATION</td>
</tr>
<tr>
<td>DEDICATION</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ABSTRAK</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Project Background
1
1.2 Objective of the Final Year Project
1
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 11
2.2 History 11
2.3 Material Selection 13
2.4 Process Solution 13

CHAPTER 3 METHODOLOGY

3.1 Step by Step Fabrication Process 16
 3.1.1 Centre Plate 16
 3.1.2 Scoops 20
3.2 Tools Used and Pattern Making Material 28
3.3 Assembly 29

CHAPTER 4 RESULT AND DISCUSSION
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Problem Faced Throughout The Project 41

5.2 Conclusion 42

5.3 Recommendations 43

REFERENCE 44
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TABLE DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>Gantt chart</td>
<td>9</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Data for volume, time and volume flow rate</td>
<td>36</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Data for braking force and RPM</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>13</td>
</tr>
<tr>
<td>3.1.1.a</td>
<td>16</td>
</tr>
<tr>
<td>3.1.1.b</td>
<td>16</td>
</tr>
<tr>
<td>3.1.1.c</td>
<td>16</td>
</tr>
<tr>
<td>3.1.1.d</td>
<td>17</td>
</tr>
<tr>
<td>3.1.1.e</td>
<td>17</td>
</tr>
<tr>
<td>3.1.1.f</td>
<td>18</td>
</tr>
<tr>
<td>3.1.1.g</td>
<td>18</td>
</tr>
<tr>
<td>3.1.1.f</td>
<td>19</td>
</tr>
<tr>
<td>3.1.1.g</td>
<td>19</td>
</tr>
<tr>
<td>3.1.2.a</td>
<td>20</td>
</tr>
<tr>
<td>3.1.2.b</td>
<td>20</td>
</tr>
<tr>
<td>3.1.2.c</td>
<td>20</td>
</tr>
</tbody>
</table>

Flow chart diagram
Pelton wheel blade
Aluminum
Raw material used
Raw material used
Cutting process using Bench saw
Facing process
Program generation using Mastercam
Running in CNC Milling machine
Conventional milling process
Tapping process
Final Piece
Retrieving shape from existing Pelton
Retrieving shape from existing Pelton
The hardened clay
3.1.2.d Pattern making in process 21
3.1.2.e Finished pattern 21
3.1.2.f Pattern assembled on the sheet metal 22
3.1.2.g Mold in the making 22
3.1.2.h Hardened mold 23
3.1.2.i Aluminum poured 23
3.1.2.j Grinding in progress 24
3.1.2.k Punch for drill reference 25
3.1.2.l Drilling process 25
3.1.2.m Tapping process 26
3.1.2.n File in progress 26
3.1.2.o Polishing process 27
3.1.2.p Finish scoops 27
3.2.1 Various tools 28
3.2.2 Vertical Air Grinder 28
3.2.3 Paper Clay 28
3.2.4 Plaster of Paris 28
3.3.1 Bolts 29
3.3.2 Attachment in progress 29
3.3.3 New Pelton wheel blade 30
4.1.1 Experiment hub 32
4.1.2 Theoretical position of the centre of scoop 33
and water jet

4.1.3 The original offset of the scoop position relative to the centre plate

4.1.4 The new Pelton wheel blade altered position

4.1.5 The position in the shaft in order from left to right with washer

4.1.6 The new Pelton wheel blade after installation into hub

4.3.1 Volume Flow Rate Comparison Result

4.3.2 Time Taken Comparison

4.3.3 Rotation Per Minute Comparison

4.3.4 Broken scoop

4.3.5 Broken scoop

4.3.6 Broken scoop
LIST OF SYMBOLS

% - percentage
Ø - diameter
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>CAD Drawing of Centre Plate</td>
</tr>
<tr>
<td>A2</td>
<td>CAD Drawing of Scoops</td>
</tr>
<tr>
<td>B1</td>
<td>Technical Drawing of Centre Plate</td>
</tr>
<tr>
<td>B3</td>
<td>Technical Drawing of Scoops</td>
</tr>
<tr>
<td>C</td>
<td>NC Coding for Centre Plate</td>
</tr>
</tbody>
</table>