Stability analysis for heat transfer flow in micropolar hybrid nanofluids

Nur Hazirah Adilla, Norzawary and Siti Khuzaimah, Soid and Anuar, Ishak and Muhammad Khairul Anuar, Mohamed and Khan, Umair and M. Sherif, El-Sayed and Pop, Ioan (2023) Stability analysis for heat transfer flow in micropolar hybrid nanofluids. Nanoscale Advances, 5 (20). pp. 5627-5640. ISSN 2516-0230. (Published)

[thumbnail of Stability analysis for heat transfer flow in micropolar.pdf]
Preview
Pdf
Stability analysis for heat transfer flow in micropolar.pdf
Available under License Creative Commons Attribution Non-commercial.

Download (1MB) | Preview

Abstract

hybrid nanofluids have superior thermal efficiency and physical durability in contrast to regular nanofluids. The stagnation point flow of MHD micropolar hybrid nanofluids over a deformable sheet with viscous dissipation is investigated. Methodology: the controlling partial differential equations are converted to nonlinear ordinary differential equations using the transmuted similarity, and are subsequently solved using the bvp4c solver in MATLAB. The hybrid nanofluids consist of aluminum and copper nanoparticles, dispersed in a base fluid of water. Results: multiple solutions are obtained in the given problem for the case of shrinking as well as for the stretching sheet due to the variation in several influential parameters. Non-unique solutions, generally, exist for the case of shrinking sheets. In addition, the first branch solution is physically stable and acceptable according to the stability analysis. The friction factor is higher for the branch of the first solution and lower in the second branch due to the higher magnetic parameters, while the opposite behavior is seen in the case of the local heat transfer rate. Originality: the novelty of this model is that it finds multiple solutions in the presence of Cu and Al2O3 nanoparticles and also performs the stability analysis. In general, non-unique solutions exist for the phenomenon of shrinking sheets.

Item Type: Article
Additional Information: Indexed by Scopus
Uncontrolled Keywords: Alumina; Aluminum oxide; Heat transfer; Nanofluidics; Nanoparticles; Nonlinear equations; Ordinary differential equations
Subjects: Q Science > QA Mathematics
Q Science > QC Physics
T Technology > TJ Mechanical engineering and machinery
T Technology > TP Chemical technology
Faculty/Division: Center for Mathematical Science
Depositing User: Mrs. Nurul Hamira Abd Razak
Date Deposited: 11 Aug 2025 03:11
Last Modified: 11 Aug 2025 03:11
URI: https://umpir.ump.edu.my/id/eprint/44269

Actions (login required)

View Item
View Item