Numerical Investigation of In-Cylinder Flow Characteristics of Hydrogen-Fuelled Internal Combustion Engine

Click here for a simple search.
[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
 
 

Hamada, Khalaf I. and M. M., Rahman and D., Ramasamy and M. M., Noor and K., Kadirgama (2016) Numerical Investigation of In-Cylinder Flow Characteristics of Hydrogen-Fuelled Internal Combustion Engine. Journal of Mechanical Engineering and Sciences (JMES), 10 (1). pp. 1792-1802. ISSN 2289-4659 (print); 2231-8380 (online)

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

885Kb

Official URL: http://dx.doi.org/10.15282/jmes.10.1.2016.4.0172

Abstract

This paper addresses the computational fluid dynamics (CFD) simulation to investigate the in-cylinder flow characteristics of 2D combustion chamber for a hydrogen-fuelled four-stroke internal combustion engine. CFD simulation has been carried out using commercial CFD codes. The engine speed was varied from 1000 to 3000 rpm, the range of equivalent ratio from 0.6 to 1.0 and the crank angle from 0 to 720 degrees in this study. The effect of the engine speed and equivalence ratio on the flow-field characteristics and volumetric efficiency are investigated in the motoring condition. The increase of engine speed gives a more efficient diffusion process for hydrogen and gives a more homogeneous air–fuel mixture structure. The characteristics of the flow-field are represented by the in-cylinder pressure and temperature distribution as well as the contours of the hydrogen mass fraction for different engine speeds. The acquired results show the maximum in-cylinder temperature and pressure obtained of 650 K and 1.143 MPa at the engine speed of 3000 rpm respectively. It can be seen that the engine speed and equivalence ratio are strongly related to the volumetric efficiency. The results show that the volumetric efficiency increases linearly with increase of the engine speed, but decreases with increase of the equivalence ratio. The results obtained from the simulation can be employed to examine the homogeneity of the air–fuel mixture structure for a better combustion process and engine performance.

Item Type:Article
Uncontrolled Keywords:Hydrogen fuel; CFD; equivalence ratio; in-cylinder; engine speed; volumetric efficiency
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Automotive Engineering Centre
Faculty of Mechanical Engineering
ID Code:14434
Deposited By: Mrs. Neng Sury Sulaiman
Deposited On:09 Nov 2016 09:26
Last Modified:10 Aug 2017 15:18

Repository Staff Only: item control page

 

 

 

 

 

 

Introduction

An Institutional Repository is an online focus for collecting, preserving, and disseminating any University publication in the digital form for the intellectual sharing.
The UMP Institutional Repository (UMP IR) provides access of University publication such as journal article, conference paper, research paper, thesis and dissertations.


Any Enquiries

Please email or call Knowledge Management staff:-

Pn. Noorul Farina (09-424 5605) OR
Cik Ratna Wilis Haryati (09-424 5612)

Any correspondence concerning this specific repository should be sent to umplibrary@ump.edu.my