Biodegradable biocomposite starch based films blended with chitosan and whey protein

Click here for a simple search.
[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
 
 

Fauziah Shaheen, Sheh Rahman (2010) Biodegradable biocomposite starch based films blended with chitosan and whey protein. Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang.

[img]
Preview
PDF
4Mb

Official URL: http://iportal.ump.edu.my/lib/item?id=chamo:58685&...

Abstract

The use of synthetic plastic materials as a food packaging causes serious hazards to the environment. The introduction of biodegradable materials, which can be disposed directly into the soil, can be one possible solution to this problem. The objectives of this work were to produce biodegradable biocomposite films and study the characterization of starch-based films blended with chitosan and whey protein. The films were synthesized by using the mixing process and the casting method. The characteristics of the blend films with different tapioca starch composition (1, 2, 3, 4 and 5 g/100 mL) were evaluated using Universal Testing Machine, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), Thermogravimetric Analysis (TGA), scanning electron microscope (SEM) observation and biodegradability using microbiological degradation test and soil burial degradation test. Among them, the biodegradable blend films compatibilized with 1% of tapioca starch content showed good mechanical properties and had the highest thermal stability. The FTIR confirmed that tapioca starch, chitosan and WPI were compatible and inter-molecular hydrogen bonds existed between them. Moreover, the SEM analysis with 1% of tapioca starch content showed a compatible, smooth and homogenous structure of the composite film. The microbiological degradation test indicated that the growth of A. Niger colony increases as the tapioca starch content was increased. In soil burial test, a rapid degradation occurred for all the films in the initial 10 days followed by 100% composting within 18 days. As a conclusion, the film fabricated had potential application in future to be used as food packaging because it can enhanced foods quality and at the same time protected the environment.

Item Type:Undergraduates Project Papers
Uncontrolled Keywords:Biodegradable plastics Polymeric composites
Subjects:T Technology > TP Chemical technology
Divisions:Faculty of Chemical & Natural Resources Engineering
ID Code:3412
Deposited By: Shamsor Masra Othman
Deposited On:16 May 2013 12:14
Last Modified:03 Mar 2015 16:01

Repository Staff Only: item control page

 

 

 

 

 

 

Introduction

An Institutional Repository is an online focus for collecting, preserving, and disseminating any University publication in the digital form for the intellectual sharing.
The UMP Institutional Repository (UMP IR) provides access of University publication such as journal article, conference paper, research paper, thesis and dissertations.


Any Enquiries

Please email or call Knowledge Management staff:-

Pn. Noorul Farina (09-424 5605) OR
Cik Ratna Wilis Haryati (09-424 5612)

Any correspondence concerning this specific repository should be sent to umplibrary@ump.edu.my