UMP Institutional Repository

Heat transfer augmentation with aluminium oxide nanofluid in a plain tube and with inserts

Korada, Viswanatha Sharma and Azmi, W. H. and R. A., Bakar and M. M., Noor and K., Kadirgama and D. M. R., Prasad and Mohd Irza Pairuz, Zamri (2011) Heat transfer augmentation with aluminium oxide nanofluid in a plain tube and with inserts. Project Report. Universiti Malaysia Pahang. (Unpublished)

[img]
Preview
PDF
PROF. DR. KORADA VISWANATHA SHARMA.PDF

Download (1MB) | Preview

Abstract

Theoretical investigation of nanofluid heat transfer under turbulent flow in a tube has been undertaken for a wide range of Reynolds number. A model is proposed for the development of eddy diffusivity equation applicable to nanofluids. The numerical results obtained from the model are compared with the experimental data of different investigators. Equations are developed for the estimation of thermo-physical properties of nanofluids for input parameters viz., temperature, nano particle size and concentration. The viscosity of nanofluid is observed to increase with particle size and decrease with temperature, whereas the thermal conductivity decreases with particle size and increases with temperature. It is found that the values of heat transfer coefficients evaluated with the equations are in good agreement with the experimental results. The theoretical determination of Nusselt number for flow in a tube with twisted tape insert has been undertaken for the first time. The results obtained for flow in a tube with twisted tape are in good agreement with the experimental data. Relevant regression equations are developed for the estimation of Nusselt number. The Colburn type equation is developed for the prediction of Nusselt number where the friction factors are to be estimated with the Blasius equation; St Pr ■(⅔@w) = f/8 (1 + ø Prw) 0.1185 Nu = 0.0304 Re0.7853 Pr0.4 [0.001+ø] 0.01398 St Pr ⅔ = 1.0344 (1.0 + ø) 0.1479 (1.0 + D/H )0.2445 where fu=0.4818 Re -0.2731 (0.001 + ø)0.00061 (0.001+ D/H)0.0296 The Nusselt number estimated with these equations predict are validated for water base nanofluids for ø ≤ 3.7%, 3000 ≤ Re ≥ 7000 and 1.4 ≤ Pr ≤ 10.0. An experimental setup for the estimation of forced convection heat transfer coefficients is designed, commissioned and in working condition. All the three objectives envisaged in the project are achieved.

Item Type: Monograph (Project Report)
Additional Information: RDU (Faculty of Mechanical Engineering) -- Universiti Malaysia Pahang – 2011
Uncontrolled Keywords: Nanofluids; Heat transfer augmentation; Twisted tapes
Subjects: T Technology > TJ Mechanical engineering and machinery
Faculty/Division: Faculty of Mechanical Engineering
Depositing User: Ms. 'Arifah Nadiah Che Zainol Ariff
Date Deposited: 22 Mar 2016 07:53
Last Modified: 12 Sep 2017 06:44
URI: http://umpir.ump.edu.my/id/eprint/12118
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item