New Integral Antiwindup Scheme for PI Motor Speed Control

C. L., Hoo and Sallehuddin, Mohamed Haris and Edwin, C.Y. Chung and Nik Abdullah, Nik Mohamed (2015) New Integral Antiwindup Scheme for PI Motor Speed Control. Asian Journal of Control, 17 (6). pp. 2115-2132. ISSN 1934-6093. (Published)

New Integral Antiwindup Scheme for PI Motor Speed Control.pdf

Download (41kB) | Preview


Windup refers to the phenomenon where a control system operates in a nonlinear region when the controller's output exceeds the input limits of the plant being controlled. Windup can lead to performance degradation in terms of overshoot, settling time and even system stability. Many anti-windup strategies involve switching and manipulating the integral control component in various ways when saturation occurs aiming to bring control back into the linear region. For better insight into windup, the proportional–integral (PI) plane is now used as a means to explain the phenomenon in terms of the controller's signals. A PI controller with a built-in closed-loop integral controller that has a reference set based on the input command and external torque is proposed. The performance for this proposed method is compared against existing conditional integration, tracking back calculation and integral state prediction schemes on second and third order systems using MATLAB/SIMULINK simulations of an induction motor and a DC motor respectively. The proposed controller showed promising potential with its ability to eliminate overshoot in both no load and full load conditions due to the decoupling of its parameters from its response and has the shortest settling time when compared against existing schemes, even in the presence of noise.

Item Type: Article
Subjects: T Technology > TJ Mechanical engineering and machinery
Faculty/Division: Faculty of Mechanical Engineering
Depositing User: Noorul Farina Arifin
Date Deposited: 18 Apr 2016 04:04
Last Modified: 21 Apr 2016 00:54
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item