Lim, Mei Jing (2016) Study on fabrication and mechanical properties of Al-SiC nano-composite materials. Faculty of Manufacturing Engineering, Universiti Malaysia Pahang.
|
Pdf
Study on fabrication and mechanical properties of Al-SiC nano-composite materials-CD 10426.pdf Download (884kB) | Preview |
Abstract
The development of metal matrix composite (MMC) has set the stage for a new revolution in materials. Aluminium Silicon Carbide (Al-SiC) nano-MMC has better mechanical properties than micro-MMC and has extremely high strength and hardness. The Al-SiC nano-composites were fabricated using powder metallurgy method to produce a more uniform distributed structure. Compactions of the nano-composites were performed using hydraulic press and a cylindrical shaped die. Two compaction loads, 15 Ton and 20 Ton, have been used to fabricate the nano-composite. The Al-SiC nano-composites have been sintered in two different temperatures. Green uniaxial press compacts in the different compaction load of 15 Ton and 20 Ton were sintered at the temperatures of 580°C and 600°C. The heating rate of the sintering process was 5°C/min and the sintering time varied between at 4 hour and 5 hour. Hardness and density of the nano-composites were investigated. Besides that, the microstructure of sintered nano-composites has been examined and characterized. It was found that the compaction load and sintering temperatures have significantly affected the mechanical properties and microstructure of the nano-composites. Green and theoretical density increased with the increment of compaction pressure. Besides that, the nano-composites have a better hardness value with higher compaction load and higher sintering temperature. It is found in the research that the nano-composite with 20 Ton compaction load and 600°C sintering temperature provided better hardness value and microstructure as compared to the samples fabricated by other compaction load and sintering temperature. However, residual porosities were present in all sintered nano-composites under each sintering condition. This research demonstrated that the higher compaction load and sintering temperature contributed better mechanical properties for the nanocomposite.
Item Type: | Undergraduates Project Papers |
---|---|
Additional Information: | Theses Gred A; Project Paper (Bachelor of Engineering in Manufacturing Engineering (Hons.)) -- Universiti Malaysia Pahang – 2016 |
Uncontrolled Keywords: | nano-composite material; fabrication and mechanical properties |
Subjects: | Q Science > Q Science (General) T Technology > TS Manufactures |
Faculty/Division: | Faculty of Manufacturing Engineering |
Depositing User: | Ms. Nurezzatul Akmal Salleh |
Date Deposited: | 20 Jan 2017 02:09 |
Last Modified: | 27 Oct 2022 01:19 |
URI: | http://umpir.ump.edu.my/id/eprint/16206 |
Download Statistic: | View Download Statistics |
Actions (login required)
View Item |