G., Ibragimov and Ahmedov, Anvarjon A. and Puteri, Nur Izzati and N. , Abdul Manaf (2017) Pursuit Differential Game Described by Infinite First Order 2-Systems of Differential Equations. Malaysian Journal of Mathematical Sciences, 11 (2). pp. 181-190. ISSN 18238343. (Published)
PDF
Pursuit Differential Game Described by Infinite First Order 2-Systems of Differential Equations.pdf - Published Version Restricted to Repository staff only Download (454kB) | Request a copy |
||
|
PDF
Pursuit Differential Game Described by Infinite First Order 2-Systems of Differential Equations 1.pdf - Published Version Download (214kB) | Preview |
Abstract
We study a pursuit differential game problem for infinite first order 2-systems of differential equations in the Hilbert space l2. Geometric constraints are imposed on controls of players. If the state of system coincides with the origin, then we say that pursuit is completed. In the game, pursuer tries to complete the game, while the aim of evader is opposite. The problem is to find a formula for guaranteed pursuit time. In the present paper, an equation for guaranteed pursuit time is obtained. Moreover, a strategy for the pursuer is constructed in explicit form. To prove the main result, we use solution of a control problem.
Item Type: | Article |
---|---|
Additional Information: | Indexes in Scopus |
Uncontrolled Keywords: | Differential game; Infinite system; Pursuer; Evader; Geometric constraint; control; strategy. |
Subjects: | Q Science > Q Science (General) |
Faculty/Division: | Faculty of Industrial Sciences And Technology |
Depositing User: | Mrs. Neng Sury Sulaiman |
Date Deposited: | 17 Nov 2017 02:09 |
Last Modified: | 17 Nov 2017 02:10 |
URI: | http://umpir.ump.edu.my/id/eprint/18815 |
Download Statistic: | View Download Statistics |
Actions (login required)
View Item |