UMP Institutional Repository

3d experimental detection and discrimination of malignant and benign breast tumor using nn-based uwb imaging system

Sabira, Khatun (2011) 3d experimental detection and discrimination of malignant and benign breast tumor using nn-based uwb imaging system. Progress In Electromagnetics Research (PIER), 116. pp. 221-237. ISSN ISSN: 1070-4698, E-ISSN: 1559-8985

[img]
Preview
PDF
3D_Experimental_detection_and_discrimination_of_malignant_and_benign_breast_tumor_using_NN-Based_UWB_imaging_system_-_Dr.Sabira_Khatun-Journal-.PDF

Download (758kB)

Abstract

This paper presents both simulation and experimental study to detect and locate breast tumors along with their classi¯cation as malignant and/or benign in three dimensional (3D) breast model.The contrast between the dielectric properties of these two tumor types is the main key. These dielectric properties are mainly controlled by the water and blood content of tumors. For simulation, electromagnetic simulator software is used. The experiment is conducted using commercial Ultrawide-Band (UWB) transceivers, Neural Network (NN) based Pattern Recognition (PR) software for imaging and homogenous breast phantom. The 3D homogeneous breast phantom and tumors are fabricated using pure petroleum jelly and a mixture of wheat °our and water respectively. The simulation and experimental setups are performed by transmitting the UWB signals from one side of the breast model and receiving from opposite side diagonally. Using discrete cosine transform (DCT) of received signals, we have trained and tested the developed experimental Neural Network model. In 3D breast model, the achieved detection accuracy of tumor existence is around 100%, while the locating accuracy in terms of (x, y, z) position of a tumor within the breast reached approximately 89.2% and 86.6% in simulation and experimental works respectively. For classi¯cation,the permittivity and conductivity detection accuracy are 98.0% and 99.1% in simulation, and 98.6% and 99.5% in experimental works respectively. Tumor detection and type speci¯cation 3D may lead to successful clinical implementation followed by saving of precious human lives in the near future.

Item Type: Article
Additional Information: S. A. Alshehri Department of Computer and Communication Systems Engineering Faculty of Engineering Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia A. B. Jantan Department of Computer and Communication Systems Engineering Faculty of Engineering Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia R. S. A. Raja Abdullah Wireless & Photonic Networks Research Centre Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia R. Mahmud Department of Imaging, Faculty of Medicine and Health Sciences Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia Z. Awang Microwave Technology Center, Faculty of Electrical Engineering Universiti Teknologi Mara, Shah Alam, Selangor 40400, Malaysia
Uncontrolled Keywords: Breast tumors, Ultrawide-Band (UWB) transceivers, Neural Network (NN)
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Faculty/Division: Faculty of Computer System And Software Engineering
Depositing User: Zairi Ibrahim
Date Deposited: 28 Dec 2011 02:50
Last Modified: 11 Oct 2018 04:23
URI: http://umpir.ump.edu.my/id/eprint/2062
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item