Effect of column size on the seismic capacity of elevated reinforced concrete water tank

Afiqah Azeera, Awang Damit (2017) Effect of column size on the seismic capacity of elevated reinforced concrete water tank. Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang.

[img]
Preview
Pdf
Effect of column size on the seismic capacity of elevated reinforced concrete water tank.pdf

Download (1MB) | Preview

Abstract

One of the major natural calamities is earthquake which have the potential to cause damage to lives and lifeline facilities. Malaysia have experienced many earthquakes from surrounding regions and several local earthquakes. Therefore, it has become a necessary to evaluate the safety of buildings in Malaysia when subjected to seismic action. Elevated reinforced concrete water tanks are one of the most essential structure to major cities and also in rural areas before, during and after a disaster such earthquake. It is important to prevent elevated reinforced concrete water tank from collapse so the water supply can be maintained. One of the methods used to evaluate the seismic capacity of elevated reinforced concrete water tank is the pushover analysis. Pushover analysis is based on the assumption that structure oscillate predominantly in the first mode or in the lower modes of vibration during a seismic event. The objective of this project is to study the effect of column size on the seismic capacity of elevated reinforced concrete water tank. A total number of 10 models of elevated reinforced concrete water tanks consist of 4 storeys and 7 storeys has been used for this project. All models have been designed repeatedly to 5 different size of column, where the beam size is fixed for each model. All models have been designed based on BS8110 to represent the existing elevated reinforced concrete water tanks. Then the pushover analysis has been conducted on all models to study the seismic capacity of elevated reinforced concrete water tank. An adequate information on seismic demands imposed on the structural system and its components by the designed ground motion are provided from the pushover analysis. Based on the pushover analysis conducted in this study, the elevated RC water tank with larger size of column tend to have higher value of force at yield state and ultimate state.

Item Type: Undergraduates Project Papers
Additional Information: Project Paper (Bachelors of Civil Engineering) -- Universiti Malaysia Pahang – 2017, SV: DR. MOHD IRWAN ADIYANTO, NO. CD: 10985
Uncontrolled Keywords: Water tank; reinforced concrete
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Faculty/Division: Faculty of Civil Engineering & Earth Resources
Depositing User: Mrs. Sufarini Mohd Sudin
Date Deposited: 27 Jun 2018 01:29
Last Modified: 18 Sep 2023 01:39
URI: http://umpir.ump.edu.my/id/eprint/21245
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item