Producing a favorable ionic mobility based on cmc/ carrageenan derivative hybrid solid bio-polymer electrolytes system

Ahmad Salihin, Samsudin and Nur Khalidah, Zainuddin (2018) Producing a favorable ionic mobility based on cmc/ carrageenan derivative hybrid solid bio-polymer electrolytes system. In: 4th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XIV) , 21 -26 October 2018 , Guangzhou, China. p. 1.. (Unpublished)

64.1 Producing a favorable ionic mobility based on cmc.pdf

Download (16kB) | Preview


The increasing interest in green energy storage materials for electrochemical devices with the development of bio-polymer materials as electrolytes candidate has attracted great attention recently. It can offer a number of high-value opportunities, provided that lower costs can be obtained besides environmental friendly. In the present work, hybrid solid bio-polymer electrolytes (HSBEs) system were successfully prepared via solution casting approached comprises of CMC and blend with kappa carrageenan. The HSBEs system was characterized for structural and the conduction properties using FTIR, XRD and EIS technique. FTIR shown that the complexation has occurred between CMC and kappa carrageenan via -OH based on the coordination site and hydrogen ions for both polymers. The ionic conductivity is found to achieve the optimum value at ~10-7 S/cm for hybrid system with the ratio of CMC: KC is 80:20 and later was further increased to ~10-4 S/cm when NH4NO3 was added with 30 wt. %. The enhancement of ionic conductivity for HSBEs system was due to the increase in amorphous state between CMC/KC and addition of NH4NO3 as revealed by XRD analysis. From IR-deconvolution approach, it shows that the increasing of protonation (H+) from [N-H4+] [NO3-] towards coordinating site of hybrid CMC/KC system, lead to the increment in ionic mobility of ions and reflected the activation energy for transportation of ions. Based on the results, it shows that the CMC/KC HSBEs system is a promising candidate for proton conduction which has potential to be applied as an electrolytes system for application in electrochemical devices.

Item Type: Conference or Workshop Item (Lecture)
Uncontrolled Keywords: Hybrid polymer; Ionic conductivity; Proton conduction; Amorphous
Subjects: T Technology > TP Chemical technology
Faculty/Division: Faculty of Industrial Sciences And Technology
Depositing User: Pn. Hazlinda Abd Rahman
Date Deposited: 26 Nov 2018 07:06
Last Modified: 04 Oct 2023 03:24
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item