UMP Institutional Repository

Face Recognition Approach using an Enhanced Particle Swarm Optimization and Support Vector Machine

Saad, Wasan Kadhim and Jabbar, Waheb A. and Abbas, Ahmed Abdul Rudah (2019) Face Recognition Approach using an Enhanced Particle Swarm Optimization and Support Vector Machine. Journal of Engineering and Applied Sciences, 14 (9). pp. 2982-2987. ISSN 1816-949x (Print); 1818-7803 (Online)

Face Recognition Approach using an Enhanced Particle.pdf

Download (411kB) | Preview


Face recognition is one of the most promising research area in the last decades. The SVM approach is one of the famous approaches in machine learning fields because it can determine the global optimum solutions with lesser number of training samples especially, complex non-linear challenges such as in face recognition applications. Though, there is an important issue that can affects the whole classification process which is picking the optimum parameters of SVM. Recently, Particle Swarm Optimization (PSO) is used to discover the optimal parameters of SVM and many versions of PSO are used for this purpose, like: PSO-SVM technique, opposition PSO and SVM which called (OPSO-SVM) technique and AAPSO-SVM technique which represents adaptive acceleration PSO and SVM. In this study, a new hybrid technique based on the combination of "Accelerated PSO" and "OPSO-SVM" is introduced for face recognition applications. The hybridization can improve the convergence speed in PSO in order to find the optimal parameters of SVM. In the feature extraction process, the PCA algorithm is used for that purpose and the resulted features are delivered to the proposed technique in order to classify the face images. Two human face datasets are used in the experimentation stage such as, SCface dataset and CASIA face dataset in order to validate the performance of the proposed technique. The comparison process for proposed technique with the other recent technique, like: PSO-SVM, OPSO-SVM and AAPSO-SVM is done as an assessment process. The proposed technique provided high accuracy for recognition when we compared it with the other techniques and it was robust in finding the optimal parameters of SVM.

Item Type: Article
Uncontrolled Keywords: Support Vector Machine (SVM), Particle Swann Optimization (PSO), Opposition PSO (OPSP), Adaptive Acceleration PSO (AAPSO), face recognition, PCA
Subjects: T Technology > T Technology (General)
Faculty/Division: Faculty of Engineering Technology
Depositing User: Noorul Farina Arifin
Date Deposited: 07 Aug 2019 03:33
Last Modified: 07 Aug 2019 03:33
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item