UMP Institutional Repository

Monte Carlo analysis of the human vertebra based on compressive loading

Zulkifli, Ahmad@Manap and A. K., Ariffin (2012) Monte Carlo analysis of the human vertebra based on compressive loading. International Journal of Mechanical & Mechatronics Engineering, 12 (5). pp. 69-73. ISSN 2077-124X

Monte Carlo analysis of the human vertebra based on compressive loading.pdf

Download (271kB) | Preview


The objective of this study is to determine the probability of injury of human crack vertebra condition subjected to compressive loading. The model had been used in this study was reconstructed from image processing and develop using SolidWorks software. The three dimensional finite element model of lumbar vertebra was organized using Ansys software. In this work, all the model components were meshed using the tetrahedral solid element (SOLID186). In order to simplify it, all the components were modeled as an isotropic, elastic material and symmetry model. The model failure was occurred when the stress intensity factor (SIF) of the bone exceeds the fracture toughness. Biological structures as well as vertebrae inherent a lot of related uncertainties and should not be solved by deterministic analysis. A Monte Carlo Simulation (MCS) technique was performed to conduct the probabilistic analysis using a built-in parametric design language (APDL) module. The results discovered that the highest stress was found on adjacent pedicle to create the weakness area and probability of failure for cracked structure condition is 2%. Therefore, pedicle was become the most crucial area to be emphasize. In addition, any flaws exist on the model such as crack will give a huge impact to the results, especially fracture. Hence, the current study was very useful to examine how the bone toughness and bone characteristics capable of sustained compressive loading in terms of probabilistic approach.

Item Type: Article
Additional Information: Indexed by Scopus
Uncontrolled Keywords: Crack; Finite element model; Lumbar spine; Monte carlo
Subjects: T Technology > TJ Mechanical engineering and machinery
Faculty/Division: Faculty of Mechanical Engineering
Depositing User: Mrs. Neng Sury Sulaiman
Date Deposited: 26 Feb 2020 08:08
Last Modified: 26 Feb 2020 08:08
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item