Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation

Naggar, Ahmed Hosny and Dhmees, Abdelghaffar S. and Seaf-Elnasr, Tarek Ahmed and Chong, Kwok Feng and Ali, Gomaa A.M. and Ali, Hazim Mohamed and Kh Alshamery, Rasmih M. and AlNahwa, Lubna H.M. and Bakr, Al-Sayed A (2024) Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation. Environmental science and pollution research international, 31 (3). pp. 3872-3886. ISSN 1614-7499. (Published)

[img]
Preview
Pdf
Eco-friendly and cost-effective adsorbent derived from blast furnace slag.pdf
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

The current investigation concerns with preparation eco-friendly and cost-effective adsorbent (mesoporous silica nanoparticles (SBL)) based on black liquor (BL) containing lignin derived from sugarcane bagasse and combining it with sodium silicate derived from blast furnace slag (BFS) for thorium adsorption. Thorium ions were adsorbed from an aqueous solution using the synthesized bio-sorbent (SBL), which was then assessed by X-ray diffraction, BET surface area analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX), and Fourier transforms infrared spectroscopy (FTIR). Th(IV) sorption properties, including the pH effect, uptake rate, and sorption isotherms across various temperatures were investigated. The maximum sorption capacity of Th(IV) on SBL is 158.88 mg/L at pH value of 4328 K, and 60 min contact time. We demonstrated that the adsorption processes comport well with pseudo-second-order and Langmuir adsorption models considering the kinetics and equilibrium data. According to thermodynamic inspections results, the Th(IV) adsorption process exhibited endothermic and random behavior suggested by positive ΔH° and ΔS° values, while the negative ΔG° values indicated a spontaneous sorption process. The maximum Th(IV) desorption from the loaded SBL (Th/SBL) was carried out at 0.25 M of NaHCO3 and 60 min of contact. Sorption/desorption processes have five successive cycles. Finally, this study suggests that the recycling of BFS and BL can be exploited for the procurement of a promising Th(IV) adsorbents.

Item Type: Article
Additional Information: Indexed by Scopus
Uncontrolled Keywords: Black liquor; Blast furnace slag; Sugarcane bagasse; Thorium; Wastewater treatment
Subjects: H Social Sciences > HD Industries. Land use. Labor
Q Science > Q Science (General)
T Technology > T Technology (General)
Faculty/Division: Faculty of Industrial Sciences And Technology
Depositing User: Mr Muhamad Firdaus Janih@Jaini
Date Deposited: 31 Jul 2024 03:23
Last Modified: 31 Jul 2024 03:23
URI: http://umpir.ump.edu.my/id/eprint/41688
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item