NurulHuda, Shah and Ling, JinKiong and Ghufira, . and Izan Izwan, Misnon and Wu, Yi-Shiuan and Yang, Chun-Chen and Jose, Rajan (2024) A simple formula to fabricate high performance lithium metal capacitors. Journal of Energy Storage, 105 (114682). pp. 1-12. ISSN 2352-152X. (Published)
|
Pdf
A simple formula to fabricate high performance lithium metal capacitors - Intro.pdf Download (258kB) | Preview |
|
Pdf
A simple formula to fabricate high performance lithium metal capacitors.pdf Restricted to Repository staff only Download (9MB) | Request a copy |
Abstract
Energy storage technologies that are low-cost, with long cyclability, high rate-capability as well as high energy and power densities are under intensive investigation for sustainable clean energy transition. In this paper, we report a high-performance lithium metal capacitor (LMC) achieved by a simple slurry modification during the cathode film preparation. We show that a mere substitution of ~0.4 wt% conductive carbon by single walled carbon nanotubes (SWCNTs) increased the specific energy of LMCs by 22 %. Porous carbon cathode in this study was obtained from a non-edible biomass (coconut rachis); the optimized sample showed desirable surface characteristics (surface area ~1933 m2⸱g−1 and pore diameter ~2.0 nm) as well as high edge-plane fraction (ratio between relative density of edge and basal plane ~0.4). Cathode with no SWCNTs show a specific capacitance (CS) of ~133 F·g−1@0.1 A·g−1 in the potential window 2.0–4.0 V in the Li//LiPF6//AC device configuration. Removal of conductive carbon by SWCNTs up to ~0.6 wt% increased electrical conductivity of the cathode; however, the charge storability enhancements were only up to ~0.4 wt%. The optimum device delivered a CS ~188 F·g−1@100 mA·g−1 in the potential window 2.0–4.0 V with improved rate capability and cycling stability. Electrochemical impedance spectroscopy was used as a tool to understand the charge kinetics at the electrode; these studies collectively validated the observed enhancements in the charge storability. The device hereby developed showed superior specific capacity than most of the reported lithium-ion capacitors and comparable to some of the LMBs. The perceived 22 % increase in the specific energy by a mere 0.4 wt% SWCNT substitution is a step forward in fabricating the high-performance LMCs in addition to support the sustainability agenda through the carbon-negative precursors.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Energy storage materials; Electrochemical capacitors; Metal-ion capacitors; Sustainable materials; Zero-carbon technologies; Supercapacitors |
Subjects: | H Social Sciences > HD Industries. Land use. Labor |
Faculty/Division: | Faculty of Industrial Sciences And Technology Institute of Postgraduate Studies Centre for Advanced Intelligent Materials |
Depositing User: | Miss Amelia Binti Hasan |
Date Deposited: | 20 Nov 2024 06:09 |
Last Modified: | 20 Nov 2024 06:09 |
URI: | http://umpir.ump.edu.my/id/eprint/42952 |
Download Statistic: | View Download Statistics |
Actions (login required)
View Item |