Syngas Production from CH4 Dry Reforming Over Coeni/Al2O3 Catalyst: Coupled Reaction-Deactivation Kinetic Analysis and the Effect of O2 Co-Feeding on H2:CO Ratio

Foo, Say Yei and Cheng, C. K. and Nguyen, Tuan-Huy and Adesina, Adesoji A. (2012) Syngas Production from CH4 Dry Reforming Over Coeni/Al2O3 Catalyst: Coupled Reaction-Deactivation Kinetic Analysis and the Effect of O2 Co-Feeding on H2:CO Ratio. International Journal of Hydrogen Energy, 37 (22). 17019 -17026. ISSN 0360-3199. (Published)

Full text not available from this repository. (Request a copy)

Abstract

The dry and oxidative dry reforming of CH4 over alumina-supported CoeNi catalysts were investigated over 72-h longevity experiments. The deactivation behaviour at low CO2:CH4 ratio (2) suggests that carbon deposition proceeds via a rapid dehydropolymerisation step resulting in the blockage of active sites and loss in CO2 consumption. In particular, at high temperatures of 923 K and 973 K, a ‘breakthrough’ point was observed in which deactivation that was previously slow suddenly accelerated, indicating rapid polymerisation of deposited carbon. Only with feed CO2:CH4 > 2 or with O2 co-feeding was coke-induced deactivation eliminated. In particular, O2 co-feeding gave improved carbon removal, product H2:CO ratios more suitable for downstream GTL processing and stable catalytic performance. Conversion-time data were adequately fitted to the generalised Levenspiel reaction-deactivation model. Activation energy estimate (66e129 kJ mol1) was dependent on the CO2:CH4 ratio but representative of other hydrocarbon reforming reactions on Nibased catalysts.

Item Type: Article
Uncontrolled Keywords: Oxidative CO2 reforming of CH4; Cobalt–nickel catalyst; Time-on-stream behaviour; Deactivation kinetics; H2:CO ratio
Subjects: Q Science > QD Chemistry
Faculty/Division: Faculty of Chemical & Natural Resources Engineering
Depositing User: Ms. Hazima Anuar
Date Deposited: 21 Apr 2016 06:08
Last Modified: 11 Jan 2018 03:52
URI: http://umpir.ump.edu.my/id/eprint/6788
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item