UMP Institutional Repository

Synthesis of molecularly imprinted polymer for glucose binding

Nurul Atiqah, Abdul Hamid (2014) Synthesis of molecularly imprinted polymer for glucose binding. Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang.


Download (1MB) | Preview


Molecularly imprinted polymer (MIP) is an attractive technique for the synthesis of highly selective polymeric receptors having artificial generated recognition sites. These materials were synthesized with polymerizable functional monomers and crosslinker that were surrounded around the template molecule. After polymerization, a template molecule was removed leaving in the polymer selective recognition sites with shape, size and functionalities complementary to the template. This study presents a synthesis of MIP selectively for glucose binding. Glucose phosphate salt (GPS) was used as a template molecule with poly(allylamine hydrochloride) (PAA.HCl) as a functional monomer. Three types of crosslinkers which are epichlorohydrin (EPI), ethylene glycol diglycidyl ether (EDGE) and glycerol diglycidyl ether (GDE) were studied during the MIP synthesis. MIP prepared using EPI as a crosslinking showed the highest glucose binding capacity around 0.84 mg glucose/mg dried gel. The binding capacity of MIP prepared using EGDE and GDE are 0.78 mg glucose/mg gel and 0.38 mg glucose/mg gel respectively. It is also found that the increase on GPS monomer concentration will contribute to increase in glucose binding

Item Type: Undergraduates Project Papers
Additional Information: Faculty of Chemical & Natural Resources Engineering Project paper (Bachelor of Chemical Engineering) -- Universiti Malaysia Pahang – 2014
Uncontrolled Keywords: Fermentation; Glucose
Subjects: T Technology > TP Chemical technology
Faculty/Division: Faculty of Chemical & Natural Resources Engineering
Depositing User: Nik Ahmad Nasyrun Nik Abd Malik
Date Deposited: 12 Oct 2015 06:05
Last Modified: 12 Oct 2015 06:05
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item