Tire Cavity Resonance Mitigation using Acoustic Absorbent Materials

Zamri, Mohamed (2015) Tire Cavity Resonance Mitigation using Acoustic Absorbent Materials. Journal of Vibration and Control. ISSN 1077-5463 (print); 1741-2986 (online). (Published)

[img]
Preview
PDF
Tire Cavity Resonance Mitigation using Acoustic Absorbent Materials.pdf - Published Version

Download (33kB) | Preview

Abstract

In this study, the use of acoustic absorbent materials specifically felt to mitigate tire cavity resonance noise is presented. The inclusion of a trim in the tire cavity is represented by the addition of the acoustic damping loss factor into the sound pressure response function. In addition, the possible solution of using multilayer trim materials to mitigate the cavity mode effect is presented using the sound absorption coefficient values from the impedance tube experiments and by adopting other empirical models. Moreover, the sound absorption coefficient calculated from the method of electrical-analogy is compared with that from the experimental data and found to be reasonable. Experimental modal analysis was performed to show the effect of inserting an absorbent material (polyfelt) onto the inside surface of the tire where reduction in both the inside cavity sound pressure level and the wheel hub acceleration was observed. A Taguchi analysis is also done to rank the effectiveness of varying trim thickness and mass density as well as adding air gap to suppress tire cavity resonance noise.

Item Type: Article
Uncontrolled Keywords: Tire cavity resonance; noise mitigation; trim
Subjects: T Technology > TJ Mechanical engineering and machinery
Faculty/Division: Faculty of Mechanical Engineering
Depositing User: Mrs. Neng Sury Sulaiman
Date Deposited: 07 Sep 2015 06:18
Last Modified: 07 Sep 2015 06:18
URI: http://umpir.ump.edu.my/id/eprint/10170
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item