Steady-State Integral Proportional Integral Controller for PI Motor Speed Controllers

Choon, Lih Hoo and Sallehuddin, Mohamed Haris and Edwin Chin, Yau Chung and Nik Abdullah, Nik Mohamed (2015) Steady-State Integral Proportional Integral Controller for PI Motor Speed Controllers. Journal of Power Electronics, 15 (1). pp. 177-189. ISSN 1598-2092. (Published)

[img] PDF
Steady-State Integral Proportional Integral Controller for PI Motor Speed Controllers.pdf
Restricted to Repository staff only

Download (748kB) | Request a copy
[img]
Preview
PDF
Steady-State Integral Proportional Integral Controller for PI Motor Speed Controllers.pdf

Download (39kB) | Preview

Abstract

The output of the controller is said to exceed the input limits of the plant being controlled when a control system operates in a non-linear region. This process is called the windup phenomenon. The windup phenomenon is not preferable in the control system because it leads to performance degradation, such as overshoot and system instability. Many anti-windup strategies involve switching, where the integral component differently operates between the linear and the non-linear states. The range of state for the non-overshoot performance is better illustrated by the boundary integral error plane than the proportional–integral (PI) plane in windup inspection. This study proposes a PI controller with a separate closed-loop integral controller and reference value set with respect to the input command and external torque. The PI controller is compared with existing conventional proportional integral, conditional integration, tracking back calculation, and integral state prediction schemes by using ScicosLab simulations. The controller is also experimentally verified on a direct current motor under no-load and loading conditions. The proposed controller shows a promising potential with its ability to eliminate overshoot with short settling time using the decoupling mode in both conditions.

Item Type: Article
Uncontrolled Keywords: Anti-windup, Integral state prediction, PI plane, Speed control, Steady-state integral proportional integral control, Tracking back calculation
Subjects: T Technology > TJ Mechanical engineering and machinery
Faculty/Division: Faculty of Mechanical Engineering
Depositing User: Mrs. Neng Sury Sulaiman
Date Deposited: 22 Mar 2016 07:43
Last Modified: 31 Mar 2016 01:40
URI: http://umpir.ump.edu.my/id/eprint/11848
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item