Adnan Mohammed, Hussein and M. M., Noor and K., Kadirgama and D., Ramasamy and M. M., Rahman (2017) Heat Transfer Enhancement Using Hybrid Nanoparticles in Ethylene Glycol Through a Horizontal Heated Tube. International Journal of Automotive and Mechanical Engineering (IJAME), 14 (2). pp. 4183-4195. ISSN 1985-9325(Print); 2180-1606 (Online). (Published)
|
PDF
J 2017 IJAME Adnan MMNoor KK Heat Transfer.pdf Download (687kB) | Preview |
Abstract
Heating hybrid nanofluids by the mixing of solid nanoparticles suspended in liquid represents a new class of heat transfer enhancement. To enhance heat transfer for many industrial applications, a computational fluid dynamics modelling simulation using the finite volume method and adopting the SIMPLE algorithm was performed. The mixture of aluminium nitride nanoparticles into ethylene glycol which acts as a base fluid is considered as a new concept of hybrid nanofluids that can increase heat transfer. The hybrid nanofluid was prepared experimentally with a volume fraction range of 1% to 4%. The size diameter of nanoparticles, heat flux around a horizontal straight tube, and Reynolds number is approximately 30 nm, 5000 w/m2 and 5,000 to 17,000, respectively. The computational method had been successfully validated using available experimental data reported in the literature. It was found that 1% to 3% Aluminum nitride hybrid nanofluids can significantly affect efficiency, while more than 3% volume fraction are insignificant as they obtain less than one efficiency. Results show that a combination of aluminium nitride nanoparticles with the EG base fluid tends to augment heat transfer performance significantly.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Nanofluid; hybrid; ethylene glycol; turbulent; CFD. |
Subjects: | T Technology > TJ Mechanical engineering and machinery |
Faculty/Division: | Centre of Excellence: Automotive Engineering Centre Centre of Excellence: Automotive Engineering Centre Faculty of Mechanical Engineering |
Depositing User: | PM Ts. Dr. Muhamad Mat Noor |
Date Deposited: | 05 Feb 2018 01:32 |
Last Modified: | 27 Jul 2018 03:19 |
URI: | http://umpir.ump.edu.my/id/eprint/19788 |
Download Statistic: | View Download Statistics |
Actions (login required)
View Item |