Thermal analysis of cellulose nanocrystal-ethylene glycol nanofluid coolant

Lingenthiran, Samylingam and Keeran, Anamalai and K., Kadirgama and Samykano, Mahendran and D., Ramasamy and M. M., Noor and G., Najafi and M. M., Rahman and Hong, Wei Xian and Nor Azwadi, Che Sidik (2018) Thermal analysis of cellulose nanocrystal-ethylene glycol nanofluid coolant. International Journal of Heat and Mass Transfer, 127. 173 - 181. ISSN 0017-9310. (Published)

[img]
Preview
Pdf
Thermal analysis of cellulose nanocrystal-ethylene glycol nanofluid coolant.pdf

Download (122kB) | Preview

Abstract

In this paper, cellulose nanocrystal (CNC) – ethylene glycol (EG) + Water (W) based nanofluid was developed and assessed for their thermophysical properties and the usefulness towards machining performances. The nanofluid was prepared by adopting two-step preparation method and at volume concentration of 0.1%, 0.3%, 0.5%, 0.7%, 0.9%, 1.1%, 1.3% and 1.5%. The nanofluid with 1.3% and 1.5% concentration showed to have superior the conductivity properties, around 0.559 W/m·K at 70 °C. However, the 0.5% concentration has the highest stability with 0.52 W/m·K at 70 °C. The 0.5% nanofluid concentration was then selected for the machining performance evaluation. The machining performance was evaluated by using a lathe machining operation to determine the heat transfer and tool life properties. The cutting variables such as cutting speed, depth of cut and feed rate are varied to understand the effect of developed nanofluid on the machining bahaviour. Findings revealed that the tool failure on machining using MWF is flank wear, chipping and abrasion and fractured at the maximum cutting distance of 500 mm. However, machining using CNC-EG+W nanofluid revealed the tool failure to be flank wear, adhesion and build- up-edge (BUE) and fractured at the maximum cutting distance of 772 mm.

Item Type: Article
Uncontrolled Keywords: Nanofluid, Ethylene glycol, Cellulose, Nano crystals, Thermal analysis
Subjects: T Technology > TJ Mechanical engineering and machinery
Faculty/Division: Centre of Excellence: Automotive Engineering Centre
Centre of Excellence: Automotive Engineering Centre

Faculty of Mechanical Engineering
Depositing User: Dr Devarajan Ramasamy
Date Deposited: 11 Oct 2018 07:16
Last Modified: 11 Oct 2018 07:16
URI: http://umpir.ump.edu.my/id/eprint/22282
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item