UMP Institutional Repository

Effect of Ni loading on SBA-15 synthesized from palm oil fuel ash waste for hydrogen production via CH4 dry reforming

Nornasuha, Abdullah and Nurul Aini, Razali and Chong, Chi Cheng and Hazirah A., Razak and Setiabudi, H. D. and S. Y., Chin and A. A., Jalil (2020) Effect of Ni loading on SBA-15 synthesized from palm oil fuel ash waste for hydrogen production via CH4 dry reforming. International Journal of Hydrogen Energy, 45 (36). pp. 18411-18425. ISSN 0360-3199

[img]
Preview
Pdf
Effect of Ni loading on SBA-15 synthesized1.pdf

Download (114kB) | Preview

Abstract

The successful synthesis of SBA-15 using silica source extracted from palm oil fuel ash (POFA) was proven with the presence of mesostructure characteristics as evidenced by low angle XRD, N2 adsorption-desorption isotherms and TEM. Different amounts of Ni were loaded on the synthesized SBA-15(POFA) using the impregnation method at 80 °C. The influence of Ni loading over the Ni/SBA-15(POFA) physiochemical properties and CO2 reforming of CH4 (CRM) were investigated in a stainless steel fixed-bed reactor at 800 °C and atmospheric pressure with 1:1 CO2:CH4 volumetric feed composition. An increment in Ni loading on SBA-15(POFA) from 1 to 5 wt% decreased the BET surface area and crystallinity of catalyst as proven by N2 adsorption–desorption and XRD analysis. The catalytic performance of CRM followed the sequence of 3 wt% > 5 wt% > 2 wt% > 1 wt% -Ni/SBA-15(POFA). This result was owing to the even distribution of Ni and good Ni–O–Si interaction of 3 wt% Ni/SBA-15(POFA) as proved by TEM, FTIR and XPS. Lowest H2/CO ratio and catalyst activity and stability of 1 wt% Ni/SBA-15(POFA) were due to the weaker Ni–O–Si interaction and small amount of basic sites that favor the reverse water gas shift (RWGS) reaction and carbon formation. The recent finding indicates that a quantity as small as 3 wt% Ni loaded onto SBA-15(POFA) could elicit outstanding catalytic performance in CRM, which was comparable with 10 wt% Ni loading catalysts reported in literature.

Item Type: Article
Uncontrolled Keywords: POFA; CO2 reforming; Ni/SBA-15; Silica source; Ni support interaction
Subjects: T Technology > TP Chemical technology
Faculty/Division: Institute of Postgraduate Studies
Faculty of Chemical and Process Engineering Technology
Depositing User: Noorul Farina Arifin
Date Deposited: 18 Dec 2019 04:11
Last Modified: 17 Feb 2021 01:49
URI: http://umpir.ump.edu.my/id/eprint/27046
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item