CFD study of the effect of SWM feed spacer geometry on mass transfer enhancement driven by forced transient slip velocity

Foo, K. and Liang, Y. Y. and Weihs, G. A. Fimbres (2019) CFD study of the effect of SWM feed spacer geometry on mass transfer enhancement driven by forced transient slip velocity. Journal of Membrane Science. pp. 1-13. ISSN 0376-7388. (In Press) (In Press)

[img]
Preview
Pdf
CFD study of the effect of SWM feed spacer geometry.pdf

Download (290kB) | Preview

Abstract

Recent studies have shown that the interactions between forced transient flow and eddy inducers (i.e. spacers) in spiral wound membrane modules results in significant mass transfer enhancement and reduction in concentration polarisation (CP). This paper uses CFD to investigate the effect of varying the spacer geometric parameters on the resonant frequency for an unsteady forced-slip, as well as the resulting permeate flux enhancement, for a 2D zig-zag spacer. The analysis shows that the resonant frequency is significantly affected by the interaction of the shear layer with successive downstream spacers. The effectiveness of forced-slip reaches a peak (up to 15.6% flux increase) for a spacer size in the range of 0.5<df/hch<0.6 because of the trade-off between mixing-induced forced-slip and the CP modulus. In addition, vortex shedding is suppressed for smaller spacer sizes (df/hch≤0.4), because viscous forces dominate over convective forces due to a smaller filament Reynolds number. As the distance between filaments is increased, the increase in flux due to forced-slip is greater (up to 31.5%), albeit the actual flux decreases because the boundary layer is more developed. These results also reinforce the finding that forced-slip is more efficient for spacer designs with poor mixing (i.e. high CP).

Item Type: Article
Additional Information: Indexed by Scopus
Uncontrolled Keywords: CFD; Unsteady slip velocity; Spacer geometry; Mass transfer enhancement
Subjects: T Technology > TP Chemical technology
Faculty/Division: Centre of Excellence: Centre of Excellence for Advanced Research in Fluid Flow
Faculty of Chemical & Natural Resources Engineering
Depositing User: Noorul Farina Arifin
Date Deposited: 31 Dec 2019 01:42
Last Modified: 03 Feb 2020 02:18
URI: http://umpir.ump.edu.my/id/eprint/27167
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item