Experimental analysis on the effect of cooling surface area and flow rate for water cooled photovoltaic module

Mohamad Firdaus, Basrawi and Anuar, M. N. A. F. and Ibrahim, T. K. and A. A., Razak (2020) Experimental analysis on the effect of cooling surface area and flow rate for water cooled photovoltaic module. In: IOP Conference Series: Materials Science and Engineering; 5th UTP-UMP-UAF Symposium on Energy Systems 2019, SES 2019, 1 - 2 October 2019 , Kuantan. pp. 1-9., 863 (1). ISSN 1757-8981 (Print), 1757-899X (Online)

[img]
Preview
Pdf (Open access)
Experimental analysis on the effect of cooling surface area.pdf
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Application of water spray or water flow on the surface of photovoltaic (PV) modules is one of the techniques used to increase efficiency. Main parameter that affect the performance by this technique is water flow rate and cooling surface are. However, there is less study focus on those parameters. Thus, the objective of this paper is to investigate the effect of water-cooled surface area and water flow rate on the temperature and power output of the PV. Orifices were used to create half-cooled and fully-cooled surface area for water to flow as cooling techniques while the hand valve was used to control the flow rate of water at 120 L/h, 180 L/h and 240 L/h flowing onto the panel. A solar simulator was constructed and used to provide 600 W/m2, 1,000 W/m2, and 1,200 W/m2 irradiance for the panel. The testing methodology consists of three different experiments for each irradiance level. It was found that more cooling surface area covered could significantly reduce temperature in any irradiance level, and fully-cooled module could keep the temperature at below 40 °C eventhough the irradiance was at 1,200 W/m2. In addition, the optimum flow rate also depends on the cooling surface area. Thus, there is a unique relation between cooling surface area and optimum flow rate. Thus, further investigation is needed on this relation.

Item Type: Conference or Workshop Item (Lecture)
Additional Information: Indexed by Scopus
Uncontrolled Keywords: Surface area; Water flow rate; Cooling techniques
Subjects: T Technology > TJ Mechanical engineering and machinery
Faculty/Division: Faculty of Engineering Technology
Institute of Postgraduate Studies
Faculty of Mechanical and Automotive Engineering Technology
Depositing User: Mrs Norsaini Abdul Samat
Date Deposited: 22 Apr 2022 02:11
Last Modified: 22 Apr 2022 02:11
URI: http://umpir.ump.edu.my/id/eprint/29160
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item