Application of response surface methodology for COD and ammonia removal from municipal wastewater treatment plant using acclimatized mixed culture

Ya'acob, Amirah and Zainol, N. and Aziz, Nor Hazwani (2022) Application of response surface methodology for COD and ammonia removal from municipal wastewater treatment plant using acclimatized mixed culture. Heliyon, 8 (6). pp. 1-7. ISSN 2405-8440. (Published)

[img]
Preview
Pdf
Application of response surface methodology for COD and ammonia removal.pdf
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

This study aimed to optimize conditions influencing the removal of chemical oxygen demand (COD) and ammonia-N in municipal wastewater by using acclimatized mixed culture (AMC). Two-level factorial analysis was used to investigate the factors affecting the degradation of COD and ammonia-N (%); ratio of synthetic wastewater (SW) to acclimatized mixed culture (AMC) (1:1 and 3:1), presence and absence of support media (Yes and No), agitation (0 rpm and 100 rpm) and hydraulic retention time (HRT) (2 and 5 days). A central composite design (CCD) under response surface methodology (RSM) determined the optimum agitation (0 rpm and 100 rpm) and retention time (2 and 5 days). The best conditions were at 3:1 of SW: AMC ratio, 100 rpm agitation, without support media, and 5 days retention time. COD and ammonia-N removal achieved until 57.23% and 43.20%, respectively. Optimization study showed the optimum conditions for COD and ammonia-N removal were obtained at 150 rpm agitation speed and 5 days of retention time, at 70.41% and 64.29% respectively. This study discovers the conditions that affect the COD and ammonia-N removal in the municipal wastewater using acclimatized mixed culture.

Item Type: Article
Additional Information: Indexed by Scopus
Uncontrolled Keywords: Ammonia-N; Biological treatment; COD; Mixed culture; Municipal wastewater; Response surface methodology
Subjects: Q Science > QD Chemistry
T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TP Chemical technology
Faculty/Division: Institute of Postgraduate Studies
College of Engineering
Centre of Excellence: Earth Resources & Sustainability Centre (ERAS)
Depositing User: Mr Muhamad Firdaus Janih@Jaini
Date Deposited: 07 Oct 2022 08:19
Last Modified: 07 Oct 2022 08:19
URI: http://umpir.ump.edu.my/id/eprint/35131
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item