A sustainable approach to green algal bioplastics production from brown seaweeds of Sabah, Malaysia

Kanagesan, Karthiani and Rahmath, Abdulla and Eryati, Derman and Mohd Khalizan, Sabullah and Govindan, Natanamurugaraj and Gansau, Jualang Azlan (2022) A sustainable approach to green algal bioplastics production from brown seaweeds of Sabah, Malaysia. Journal of King Saud University - Science, 34 (102268). pp. 1-7. ISSN 1018-3647. (Published)

[img]
Preview
Pdf
A sustainable approach to green algal bioplastics production from brown seaweeds of Sabah, Malaysia.pdf
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

A significant concern in generating ecologically friendly plastics has paved a way for use of algae-based green bioplastics as a substitute for conventional plastics. This study signifies the production and characterization of biodegradable algae-based bioplastics using alginate extracted from brown seaweeds of Sargassum sp. found abundantly in coastal waters of Sabah, Malaysia. During the extraction of alginate from Sargassum sp., process variables such as the alkali (Na2CO3) concentration, temperature (°C), and time (hours) were optimized by employing ethanol method of extraction. The maximum yield of alginate (20.85 %) was obtained with the following conditions of 3 % of Na2CO3, at 95 °C and 3 h. Then, the extracted alginate was used to synthesize seven bioplastics with different formulations, one in the absence of invert sugar (green plasticizer) as control while the others were blended with 5 %, 10 % and 15 % of invert sugar (IS) respectively. The synthesized bioplastics were further characterized via mechanical test through tensile-strength (TS) and elongation at break (E) while its degradability was evaluated using soil burial test. The results reveal that bioplastics incorporated with IS enhanced the features of the bioplastics as they were more flexible, unlike the control bioplastics which were brittle. Among the formulations used, the bioplastics that comprised of alginate (Alg) 6 % with 5 % IS exhibited the highest TS and were able to degrade completely within 4 days. Thus, this study brings in an insight into the importance of Sargassum sp. as a potential feedstock for the development of green algae-based bioplastics to counter the plastic pollution problems as it can surpass the sustainability matter and environmental challenges caused by disposal of conventional plastics.

Item Type: Article
Additional Information: Indexed by Scopus
Uncontrolled Keywords: Alginate; Biodegradability; Bioplasticizer; Bioplastics; Sargassum; Tensile strength
Subjects: H Social Sciences > HD Industries. Land use. Labor > HD28 Management. Industrial Management
Q Science > Q Science (General)
T Technology > T Technology (General)
Faculty/Division: Faculty of Industrial Sciences And Technology
Depositing User: Mr Muhamad Firdaus Janih@Jaini
Date Deposited: 11 Apr 2023 04:09
Last Modified: 11 Apr 2023 04:09
URI: http://umpir.ump.edu.my/id/eprint/37428
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item