Qasem, Ramzi and Mohd Bijarimi, Mat Piah and Alhadadi, Waleed (2023) Mechanical, thermal, and morphological properties of poly(lactic acid) (PLA)/ recycled tyre rubber waste compatibilised with chain extender. Journal of Chemical Engineering and Industrial Biotechnology (JCEIB), 9 (2). pp. 73-79. ISSN 0126-8139. (Published)
|
Pdf
Mechanical thermal and morphological properties of poly.pdf Available under License Creative Commons Attribution Non-commercial. Download (599kB) | Preview |
Abstract
The accumulation of waste tires in our society is a pressing issue due to their short lifespan and increasing demand. This research delves into effective methods for recycling waste tires, with a particular focus on utilising biopolymers. Polylactic acid (PLA), a completely biodegradable polymer, has gained popularity for its biocompatibility, biodegradability, mechanical strength, and ease of processing. To overcome its toughness and thermal stability limitations, PLA has been blended with commercial polymers, such as rubber. Furthermore, the addition of 10% recycled tyre waste to 90% PLA has been shown to increase its durability and strength. Joncryl® ADR is used as a chain extender and reactive compatibiliser to enhance the chemical interactions in the binary blend. The samples were prepared using a twin-screw extruder with the temperature between 150 and 190 ºC and 60 rpm of screw speed. These blends are then analyzed using a range of characterization techniques, including Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile testing, and notched Izod impact testing. The blends were then characterized by chemical changes, thermal transitions, and thermal degradation. It was found that the 90/10/0.6 (PLA/RW/ADR) nanocomposite exhibited maximum thermal degradation.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Polylactic acid; Recycled waste tire; Chain extender; Compatibiliser; Mechanical properties |
Subjects: | T Technology > TP Chemical technology |
Faculty/Division: | Institute of Postgraduate Studies Faculty of Chemical and Process Engineering Technology |
Depositing User: | Mrs Norsaini Abdul Samat |
Date Deposited: | 19 Feb 2024 08:02 |
Last Modified: | 19 Feb 2024 08:02 |
URI: | http://umpir.ump.edu.my/id/eprint/40432 |
Download Statistic: | View Download Statistics |
Actions (login required)
View Item |