Yadav, Aman and Mahendran, Samykano and Pandey, A. K. and Kareri, Tareq and Kalidasan, B. (2024) Optimizing thermal properties and heat transfer in 3D biochar-embedded organic phase change materials for thermal energy storage. Materials Today Communications, 38 (108114). pp. 1-17. ISSN 2352-4928. (Published)
|
Pdf
Optimizing thermal properties and heat transfer in 3D biochar_ABST.pdf Download (260kB) | Preview |
|
Pdf
Optimizing thermal properties and heat transfer in 3D biochar.pdf Restricted to Repository staff only Download (18MB) | Request a copy |
Abstract
Enhancing the thermal properties and light-absorbing capabilities of phase change materials (PCMs) through the utilization of environmentally friendly, economically viable biochar materials is pivotal for optimizing solar energy capture and utilization. Herewith, initially, a green, three-dimensional, eco-friendly carbon nano inclusion is synthesized from Prosopis juliflora through vacuum oven carbonization at 130 °C, followed by size reduction via ball milling, promising high-impact contributions. Subsequently, green-synthesized nano-inclusions are dispersed in PEG-1000, creating advanced nano-enhanced phase change materials with improved thermo-physical properties using a two-step ultrasonication technique for enhanced thermal conductivity. This innovative study comprehensively explores the morphological behaviour, chemical stability, optical absorptivity, thermal properties, and reliability of the PEG-PJ composite. Remarkably, present research revealed that the composite achieved its highest thermal conductivity, an impressive 0.49 W/m⋅K, at 0.7 wt% of 3-D (PJ) biochar. Notably, the melting temperatures of the PEG-PJ composites consistently ranged from 40.1 °C to 40.5 °C. At the same time, their latent heat capacities displayed a notable increase, ranging from 145 J/g to 152.7 J/g, marking a substantial enhancement of 3.968% and 1.758%, respectively. Furthermore, to confirm the reliability and consistency of experimental findings, 500 thermal cycles were performed. Additionally, a numerical analysis study is conducted by utilizing 2-D energy modelling software to simulate the heat transfer rate owing to the improved thermal conductivity of the developed PEG-PJ composite PCM compared to PEG-1000. In conclusion, developed composites optimize solar storage, improve building thermal control, and enhance industrial heat exchangers for sustainable innovation in energy.
Item Type: | Article |
---|---|
Additional Information: | Indexed by Scopus |
Uncontrolled Keywords: | Eco-friendly; Green synthesis; Polyethylene glycol; Prosopis juliflora; Thermal stability |
Subjects: | Q Science > Q Science (General) T Technology > TJ Mechanical engineering and machinery |
Faculty/Division: | Institute of Postgraduate Studies Faculty of Mechanical and Automotive Engineering Technology |
Depositing User: | Mrs Norsaini Abdul Samat |
Date Deposited: | 20 May 2024 05:21 |
Last Modified: | 20 May 2024 05:21 |
URI: | http://umpir.ump.edu.my/id/eprint/41293 |
Download Statistic: | View Download Statistics |
Actions (login required)
View Item |