Optimizing railway safety by analyzing human reliability techniques - A review

M. E., M. Aliza and Ahmad Fitri, Yusop and Mohd Adnin, Hamidi and Muhammad Azri, Muhammed Nor (2025) Optimizing railway safety by analyzing human reliability techniques - A review. In: Journal of Physics: Conference Series. 3rd International Postgraduate Conference on Mechanical Engineering 2024, IPCME 2024 , 3 October 2024 , Virtual, Online. pp. 1-14., 2933 (1). ISSN 1742-6588 (print); 1742-6596 (online) (Published)

[img]
Preview
Pdf (Open Access)
Optimizing Railway Safety by Analyzing Human Reliability Techniques - A review.pdf

Download (1MB) | Preview

Abstract

Human reliability analysis (HRA) is a critical component in ensuring the safety and efficiency of railway engineering. As railway systems grow more complex, the methodologies used to assess and improve human reliability must also advance. This review provides a comprehensive analysis of the evolution of HRA, from the first-generation techniques to the third-generation approaches currently in use. Through a broad survey of the literature, comparative analysis, and detailed case studies, this review traces the development of HRA methods, showing the evolution from traditional techniques to modern hybrid approaches. The review also emphasizes the significance of hybrid Human Error Assessment and Reduction Technique (HEART) methods, which integrate multiple HRA approaches to provide a more comprehensive and accurate assessment of human reliability. The hybrid technique offers a more accurate estimation than standard methods, as evidenced by the determined Pearson coefficient of 0.9990 between the simulation findings and the HEP values of HEART-related methodologies. It also explores the integration of human factors into railway safety systems, underscoring the importance of considering human-machine interactions and the cognitive and behavioural aspects of railway operations. Key findings indicate that while traditional HRA methods laid the groundwork, there is a growing need for continuous innovation to address the increasing complexity of railway systems. This includes the development of hybrid models that combine insights from various HRA techniques and the incorporation of advanced human-machine interaction paradigms to further minimize human error rates. The objective of this review is to offer recommendations for future research in the field of HRA for railway engineering. It advocates for the development of advanced hybrid models with the use of cutting-edge technology like machine learning and artificial intelligence. By combining historical insights with modern technological advancements, the goal is to create more robust and reliable HRA methods that can better support the safety and efficiency of railway operations.

Item Type: Conference or Workshop Item (Paper)
Additional Information: Indexed by Scopus
Uncontrolled Keywords: assessed proportion of affect.; error-producing conditions; fault tree analysis; human error assessment and reduction technique; human error probability
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Faculty/Division: Institute of Postgraduate Studies
Faculty of Mechanical and Automotive Engineering Technology
Depositing User: Miss Amelia Binti Hasan
Date Deposited: 26 Mar 2025 07:40
Last Modified: 26 Mar 2025 07:40
URI: http://umpir.ump.edu.my/id/eprint/44223
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item