Mohammed, Ausama A. and Bachtiar, Dandi and Siregar, J. P. and M. R. M., Rejab and Syed Farhan, Hasany (2016) Physico-chemical Study of Eco-friendly Sugar Palm Fiber Thermoplastic Polyurethane Composites. BioResources, 11 (4). pp. 9438-9454. ISSN 1930-2126 (print); 1930-2126 (online). (Published)
PDF
BioRes_11_4_9438_Mohammed_BSRH_Physicochemical_Palm Fibre_Poylurethane_Comp_9759.pdf Restricted to Repository staff only Download (1MB) | Request a copy |
||
|
PDF
fkm-2016-dandi- Physico-chemical Study of Eco-friendly.pdf Download (118kB) | Preview |
Abstract
The physicochemical properties of an innovative and environmentally friendly composite material based on sugar palm fiber (SPF) and thermoplastic polyurethane (TPU) were examined. The base material with short fibers was extruded and hot pressed to produce the TPU-SPF composites with different synthetic parameters. Operating parameters including temperature for extrusion (170 to 190 C), rotational velocity (30 to 50 rpm), and fiber particle sizes (160, 250 and 425 micron) were investigated. The aims were to optimize rotational velocity, temperature, and fiber size of the TPU-SPF composites. Firstly, the influence of rotation of velocity and temperature on the tensile properties was investigated. Secondly, effects of different fiber sizes on tensile, flexural properties and impact strength as per ASTM standards were tested. The morphological, thermal and physicochemical properties of the synthesized TPU-SPF composites were ascertained with Fourier Transform Infrared Spectroscopy (FT-IR), scanning electron microscopy (SEM), X-Ray Diffraction (XRD), and thermographimetric analysis (TGA). The optimal results were observed with a temperature of 190 C and a rotational velocity of 40 rpm. Meanwhile, the strength and modulus for tensile and flexural were best for fiber size 250 micron. Moreover, the impact strength reached a peaking trend at 250 micron fiber size.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Environmentally friendly composites; Thermoplastic polyurethane; Sugar palm fiber |
Subjects: | T Technology > TJ Mechanical engineering and machinery T Technology > TP Chemical technology |
Faculty/Division: | Faculty of Chemical & Natural Resources Engineering Faculty of Mechanical Engineering |
Depositing User: | Dr. Dandi Bachtiar |
Date Deposited: | 30 Nov 2016 06:02 |
Last Modified: | 27 Sep 2018 08:36 |
URI: | http://umpir.ump.edu.my/id/eprint/15213 |
Download Statistic: | View Download Statistics |
Actions (login required)
View Item |