Assessing storage of stability and mercury reduction of freeze-dried Pseudomonas putida within different types of lyoprotectant

Abdul Aziz, Mohd Azoddein and Yana, Nuratri and Faten Ahada, Mohd Azli and Ahmad Bazli, Bustary (2017) Assessing storage of stability and mercury reduction of freeze-dried Pseudomonas putida within different types of lyoprotectant. In: AIP Conference Proceedings: Proceedings of the 3rd Advanced Materials Conference 2016 (3rd AMC 2016) , 28-29 November 2016 , Langkawi, Malaysia. , 1901 (100012). ISBN 978-0-7354-1589-8

[img]
Preview
Text
1.5010534-1.pdf

Download (384kB) | Preview

Abstract

Pseudomonas putida is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried P. putida allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry P. putida cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried P. putida obtained was then mixed with synthetic mercury. Viability of recovery P. putida after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose was able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage at 4 °C without vacuum. Polyethylene glycol (PEG) pre-treated freeze dried cells and broth pre-treated freeze dried cells after the freeze-dry process recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried P. putida cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth P. putida but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried P. putida cells to recover before introducing freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage of 3 weeks was 17.91 %. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 25.03%. Freeze dried P. putida was found to have lower mercury reduction compare to the fresh P. putida that has been grown in agar. Result from this study may be beneficial and useful as initial reference before commercialized freeze-dried P. putida.

Item Type: Conference or Workshop Item (Lecture)
Uncontrolled Keywords: Pseudomonas putida; lyoprotectant;
Subjects: T Technology > TP Chemical technology
Faculty/Division: Faculty of Chemical & Natural Resources Engineering
Depositing User: Noorul Farina Arifin
Date Deposited: 29 Jun 2018 02:03
Last Modified: 29 Jun 2018 02:03
URI: http://umpir.ump.edu.my/id/eprint/21436
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item